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Following launch on 10 August 1992, TOPEX/Poscidon began and continues a very successful global study of
the earth's ocean circulation using a combination of radar altimetry and precision orbit determination.
TOPEX/Poscidon is a joint effort of NASA and the French Space Agency CNES (Centre National d’Etudes Spatiales)
and is currently in the final year of its three-year primary mission. A three-year ¢xtended mission phase will follow.
The near-circular frozen orbit has a mean altitude of ~1336 km and an inclination of ~66 deg, providing a repeat
ground track covering 127 orbits over -lo days. Periodic orbit maintcnance maneuvers (OMMs) keep the ground
track within 11 km of a reference ground track, while also cnsuring that other orbital parameters remain within
required limits. P’recision orbit determination (1°01>) performed by the Goddard Space Flight Center (GSFC) using
lascr ranging and DORIS tracking data (CNES) defines radial position rcla t ive to the geocenter to an unprecedented
accuracy of ~5cm.

The 1701 dresults arc utilized to reconstruct the operational orbit history in terms of classical mean clements.
The key paramelers are the semi-major axis a, the inclination i, and the cccentricity vector, e-@. These mean
clementsreflectremovalof all central and third-body perturbations having periodic variations over a single ground
track repea t cycle. A 20x20” truncation of the JGM?2 earth gravity field determines the mean semi-major axis relative
to the POD to an RMS accuracy of -14 ¢m; detm-mines mean inclination to an RMS accuracy of -5 udeg, and
determines the eccentricity vector parameters with an RMS of ~9 deg for @, and -7 ppm for eccentricity. This paper
defines the mean elements, determines their computational precision and cost, and cstablishes the sources of their
variation. The effects of these variations on the ground track behavior are then summarized.

Semi-major AXis

Pre-launchstudies indicated ground track control could be effectively provided by periodic removal of
accumulated semi-major axis decay caused by along-track forces due almost entirely to atmospheric drag. This
control process requires sub-meter semi-major axis determination accuracy, achieved by operational orbit
determination performed by the GSEC Flight Dynamics Facility using one-way Doppler acquired via the NASA
Tracking and DataRelay Satellite System ('1°1)1<SS). The rate of semi-major axis decay would depend primarily on
the 8 1 -day mean Fyg 7 solar flux. At launch in August 1992, the mean solar flux was -125x10-*watts/m?/Hz and
has steadily declined from this levelas the minimum  of solar cycle 22 approaches, currently expected in late 1996.
These circumstances limit the drag-induced semi-major axis decay rate to ~5to 7 em/day.

Afterlau rich, observed changes in semi-major axis were much larger than expected, indicating the presence of
additional along-track forces, now confirmedto have body-fixed origins. These forces cause ¢i ther orbital boost or
decay, depending on the yaw control mode.  Bither sinusoidal yaw steering or fixed yaw modes maintains nadir
pointing for altimetry and points the large 28 m?solar array (SA) near the sun for power management. The body-
fixedforces arise fromsolar radiation, thermal gradients, and molecular outgassing, produced mostly by the large
SA, particularly during afixed yaw mode. Shortly before launch, ii plan was adopted to usce a SA pitch bias to limit
prakbattery charge currents during exit from carth occultation. A 54-deg pitch bias cffectively regulates battery
performance, butradiation forces normal to the SA arc notalong the sunline as originally planned and reflected
throughout navigation software.  As aresul t, sizable unplanned along-track components accumulate to change the
semi-majoraxis as much as 25 cm/day, the direction and magnitude depending onthe yaw mode. These body-
fixedforees can cither offsetor addto the decay in semi-major axis induced by a t mospheric drag (Fig. 1). Estimates
of theseforees and an effect ive predict ion model were needed to maintain the satellite orbit and ground track.

The rescarch described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology,
wnder contract with the National Aeronautics and Space Administration.
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The combined effects of at mospheric drag and the bod y-fixed forces on semi-major axis were effect ively
estimated from quick-look orbit determination based on laser ranging data. A byproduct of this strategy is the total
once/rcv along-track non-gravitational acceleration from which the total ratc of change in semi-major axis can be
casily computed. Isolation of the body-fixed forces then requires removal of drag contributions. The integrity of this
process depends on the accuracy of the atmosp heric density model, and this always raises reasonabl e concern. This
paper compares the performance of the Jacchia-Roberts and DTM empirical density models, neither of which reflects
flight data at TOPEX/Poscidon altitude. Theoreticalmodels of the body-fixed forces were developed for each yaw
controlmode using cst i ma tcs of satellite surface properties and i nflight temperature mcasurements. Differences
betweenthe theoreticalmodels and observed data arc currently most notable during yaw steering when SA curling
causcd by thermal imbalances are believedto be the primary contributor to observed along-track forces. Ongoing
improvements in the theoreticalmodels may eventually permit their operational use instead of the more complex
and tedious empirical techniques currentl y used.  Such modeling improvements may simplify flight operations and
allow more confident isolation of drag cent ributions that could lead to improved density models.
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Fig. 1. Mean Semi-major Axis History
inclination

Anorbit inclination of -66 deg allows coverage of -95% of the earth’s icc-free occans, while also providing the
first-cver measurements of ocean tides f rom space. The required “iarget” inclinat ion of 66.0408” deg provides precise
overflightof two ground verification sites during each repeat cycle, determined by removing all gravitational
perturbations with periods upto three years (prime mission duration). The mean inclination, defined by removal of
only the perturbations with lo-day periodicity, exhibits long-term variations of 13 mdeg about the target value duc
to a combination of lunar and solar gravity influences. Lunar gravity alone induces the shorter-term variations (see
Fig. 2). At TOPEX/Poscidon altitude, these perturbations induce ground track variations of similar magnitude as
causcd by ci ther at mospheric drag or t he bod y-fixed forces. The effects of lunar-solar gravity on the ground track
become more pronounced in the presence of lower drag as the solar minimum approaches in late 1996.
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Fig. 2. Mean inclination History
Liccentricity Vector
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Usc of afrozen orbit limits variations in eccentricity and periapse location and precludes the nced for
ma ncu vers specificall y dedicated to their cent ml. - An eccentricity e < 0.()()1 suitably limits altitude variations for
cffective altimetry. A frozen orbit casily guarantees this control by the near-cancellation of higher-order
geopotential perturbations on o by secular variations, while lowcl-order perturbations On eccentricity vanish when
w=90 0r 270 deg. A sequence of six orbit acquisition maneuvers achieved cccentricity vector values mar the target
conditions of ¢=95 ppm and o =90 deg. Fig, 3 shows that inflight variations in ¢ and @ during the two years
sincelaunch systematically vary aboutthese target values. The paper explains these variations and the influence of
ongoing OM Ms, and compares them with those predicted by pre-flight studices.
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Fig. 3. Eccentricity Vector History
GroundTrack History

Since precisely achieving operationalorbit conditions during, the first six weeks following launch, there have
beenseven OM Msimplemented to effectively maintain the satellite ground track within 1 1 km of the reference
ground track. These OM Ms, performed near the cast boundary of the control band, raise the decayed semi-major
axis above the reference value (sce Fig. 1), thereby inducing a westward drift in the ground track. Fig. 4 shows the
resulting ground track history and cachOM wm iocation.  L.unar -solar gravity perturbations induce short-term
periodic oscillations in the orbit node and node rate, and have the most pronounced cffect as the ground track mars
the west boundary. These perturbations have the same order of magnitude effect on the satellite ground track as
cither atmospheric drag or the body-fixed forces, and can therefore greatlyinfluence ground track behavior. The
paper relates these ground track variations 1o those observed in the classical mean clements.
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Fig. 4. Ground Track History and Related Orbit Maintenance Maneuvers (OMMs)




